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ABSTRACT

This paper is concerned with a number of topics in the theory of
viscosity solutions of Hamilton<Jacobi equations in infinite dimensional
spaces . begun in Parts I and II of this series? The development of the theory
in the generality in which the 'space' or state variable lies in an infinite
dimensional space is partly motivated by the hope of eventual applications to
the theory of control of partial Aifferential equations or control under
partial observation. Among the results presented are: The existence and
uniqueness theory previously discussed in spaces with the RadonJNikodym
property is extended beyond this class; examples are given which show that
Galerkin approximation arguments in their naive forms cannot be made the basis
of an existence theory; some equations with *unbounded terms? of the sort that
arise in control of pde's are treated by means of a change of variables

reducing the problem to the previously studied cases. s .
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HAMILTON=-JACOBI EQUATIONS IN INFINITE DIMENSIONS, PART III

Michael G. Crandall. and Pierre-Louis Lions'.

This paper continues the study of Hamilton-Jacobi equations in infinite dimensions
begun in (8] - (10]. The equations of interest have the form .
(HJ) F(x,u,Du) = 0 in
where R is an open subset of some real Banach space V, the unknown function u:} + R is
to be continuous, Du(x) denotes the Fréchet derivative of u at x € 2 {and thus takes
its values in the dual v' of V), while the nonlinear function F is a continuous mapping
from 2 x Rx V' into R (i.e. F e C(R X Rx V")),

In Part I ([9)), we showed that general uniqueness results hold for Hamilton-

Jacobi equations in infinite dimensional spaces for the same type of generalized

P
solutions, the so-called viscosity solutions, for which uniqueness was proved in the :;;?
.h -..D -
"classical case" Vv = !F in [7) (see also M. G. Crandall, L. C. Evans and P. L. Lions ;x‘:.
Ea o
>
{51). Corresponding existence results were proved in Part II ([10]) under essentially i

the same assumptions on the equation and V as used for uniqueness. Various
counterexamples showing the necessity of the assumptions on the equation were also
given in (9], (10].

A basic assumption made in Parts I and I1 was that V has the Radon-Nikodym

property (i.e., "V is RN"). The Radon-Nikodym property was used everywhere in the

analysis in the guise of a result of C. Stegall [23] asserting that if V is RN, then a

bounded, continuous real-valued function on a closed ball in V can be perturbed by an :6.}V
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arbitrarily small linear functional to obtain a function which attains its minimum
value. This result was the device which enabled us to overcome the lack of compactness
of closed and bounded subsets of V in extending the uniqueness arguments from the
classical case. 1It was also assumed (although the assumption was buried in conditions
imposed on the Hamiltonian) that V admits a norm-like function which is differentiable
on Vv \{0}. Two other new ingredients (beyond the use of Stegall's result mentioned
above) were required to treat the existence question; the use of ad hoc differential
games to provide existence for "reqularized"” Hamiltonians and a sharp constructive
convergence result [10,Theorem 2.1], which was new even in the classical case.

The topics taken up in the current paper are wide ranging; they include relaxing
the requirement that V be RN in the uniqueness and existence theory, existence and
uniqueness results when H satisfies coercivity conditions, examples showing the
dramatic failure of the basic Fadeo-Galerkin method and the treatment of (SP) and (CP)
in certain cases in which the Hamiltonian is not everywhere defined but involves
expragsions like Ax in which =-A is an unbounded generator of a strongly continuous
semigroup of contractions. A more detailed description follows.

Section I of this paper is devoted to relaxing the requirement that V be RN in
parts of the theory. This is done by introducing the notion of strict viscosity
solutinns (which was briefly mentioned in (9, Appendix]). It is shown that the notion
is stable, coincides with the standard notion in nice spaces and that if (for example)
the norm of V is differentiable except at the origin, then general uniqueness results
hold for hoth the model stationary problem
(sP) u + H(x,u,Du) =0 in V
and the Cauchy problem

(ce) + H(x,t,u,Du) = 0 in Vv x (0,T)

Uy
u(x,0) = ¢(x).
The principal new technical aspect involves using the notion of strict viscosity

gnlutions to work with Ekaland's principle (13] (which holds in general Banach spaces)
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in place of Stegall's result. However, this theory still requires V to satisfy some
version of the condition:
(0) There is a mapping N:V + (0,*[ which is Lipschitz continuous on V,

differentiable on V\(0} and satisfies N(x) > |x| for x ¢ V.

We note that this condition excludes extremely important choices for V like L1, L7,
spaces of continuous functions and the space of bounded measures. The study of (HJ)
equations in these spaces remains almoast totally open. After the discussion of
uniqueness, we present complementary existence results for (SP) and (CP). In the
discussions of both the existence and uniqueness regults we give very little detail and
merely refer the reader to the program of Parts I and II when it is easily adapted to
the current setting. When essentially new arguments are required, we give at least one
example. 1In particular, the basic scheme of the existence proof is that which was
introduced in Part II ((10]). However, the method used in [10] for viscosity solutions
breaks down for strict viscosity solutions in the final stages of the argument and this
new difficulty is overcome by considering two distinct differential games for the same
equation.

Section I is devoted to three distinct topics. First, it is shown how to obtain
existence and uniqueness results when the Hamiltonian in (S) or (CP) is coercive; that
is H(x,p) + = as the norm of p € v' tends to ®, Secondly, we give examples which show
the Aramatic failure of the Faedo - Galerkin approximation method {(in a simple form) as
a vehicle to prove the existence results. 1Indeed, natural finite dimensional
approximations may converge to a function solving the wrong equation! Finally, we
congider some Hamilton - Jacobi equations associated with control problems for
evolution equations. These have the form
1) u, ¢+ (Ax,Du) + F(t,Du) = 0 in Vv x ]0,7T(
where V is a Hilbert space and the (possibly unbounded) linear operator =-A is the
infinitesimal generator of a strongly continuous semigroup on V. Similar equations

were first studied by V. Barbu and G. DaPrato (1], [2]. The term (Ax,p) occurring in

-3-
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the Hamiltonian is only defined if x lies in the domain of A, so (1) is not covered by .
the results of Parts I and IXI. However, we introduce a device which allows one to
reduce (1) to a form where the arguments of Parts I and II still succeed. As the »
expert reader will have noticed, the form of (1) is not yet general enough to cover
many applications to the control of pde's one might hope to encompass in the theory,
and significant extensions of (1) are under investigation.
We would like to mentinn the fact that it is typical of the subject that all
existence and uniqueness results of the sort we present here have many variations. For
example, the following problems have been studied in the case V = RN and the results
may be extended to the infinite dimensional setting: Problems with boundary conditions
of either Dirichlet type (M. G. Crandall and P. L., Lions (7], P. L. Lions (18], [19],
G. Barles [3), [4]) or Neumann type (P. L. Lions [20], B. Perthame and R. Sanders ([22])
and problems whose solutions have different behaviours at = (H. Ishiii [16] and M. G.
Crandall and P. L. Lions {12]).
We have assumed that potential readers (s?) of this paper have had significant
exparlence with viscosity solutions and Parts I and II are a prerequisite to following
the text. Indeed, while the statements of the results will be clear enough, the

assumptions themselves will be totally unpalatable without prior exposure.
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I. STRICT VISCOSITY SOLUTIONS

I.1. Definition, Blementary Properties and Unigueness Results.

We begin by recalling the definitions of €t~super and subdifferentials of u ¢ C(R)
at x € Q where Q is an open subset of the Banach space V. First let us fix some
notation. We will use I ' to denote the norm in V, the dual norm in v and the
absolute value on R. Bp (B;) will denote the ball of radius R and center 0 in V
(respectively, V.) while B(x,r) (sz,r)) is the ball of center x (respectively, p) and
radius r in V (respectively, V'). We will not Aistinguish between open and closed
balls; the reader can deduce which is appropriate from the context. The value of
p < v' at x € V will be denoted by (p,x).

The € - superdifferential of ¢ at x, D:u(x), is given by

+ * uly) = u(x) = (p,y = x)
(2) Deu{x) = {p €V : lim sup ( o ) < e}
: b y T
ye
and, similarly, the € - subdifferential D;u(x) is given by
(3) Dgu(x) = {p € v': 1im sup ( a0 = ?ﬂxz ;I(E'Y ~X). } > =€} .
yox Y
yef

Here € 1s any positive number. A little thought shows that another way to say that
p € Dzu(x) (respectively, p € D;u(x)) is to say that there is a ¢ € C(Ql) which i3
differentiable at x with the derivative D¥(x) = p and a number &, 0 € § < ¢ such that
uly) = ¥(y) - 8|x - y| (respectively, uly) - ¥(y) + 8}x - y!) has a local maximum
(respectively, minimum) with respect to y at y = x.

-
Now we define strict viscosity sub and supersolutions. Let F € C(Q x R X V ).

Definition I.1: If Y > 0 and u € C(fl), then u is a strict viscosity subsolution up to

Yof F =0 in 0 if

(4) inf F(x,u(x),p + q) < 0 for x € R, p € D;u(x) and 0 < ¢ < Y
lql<ce

and u is a strict viscoslity supersolution up to Y of F = 0 in Q if

(4 sup F(x,u(x),p + q) » 0 €or x € Q, p € Dgu{x) and 0 < € < Y.
lq“ﬁ
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D Of course, u is a s:rict viscosity solution of F = 0 up to vy if it is both a * ﬁ
g e
< strict viscosity subsolution and a strict viscosity supersolution up to y. If u is a Oy
. strict viscosity subsolution (supersolution, solution) up to vy for all vy > 0, then it . et

is simply a strict viscosity subsolution (respectively, supersolution, solution).
Pinally, a strict viscosity subsolution (respectively, supersolution, solution) of
hS F = 0 will be referred to as an strict viscosity solution of F € 0 (respectively,
F>»0, FP=20).

Remarks 1.1:

(1) The usual sub and superdifferentials ptu(x) and D u{x) are related to the

t=-versions by D’u(x) = FBDZu(x). It then follows from the continuity of F and
€>

letting ¢ tend to zero in (4) and (4)' that strict viscosity sub and supersolutions are

viscosity sub and supersolutions in the ordinary sense. As usual, (4) is regarded as O
satisfied automatically at points x for which D:u(x) is empty, etc.

(ii) We have changed the definition slightly from that given (as an example among
various possibilities) in Part I ({9]): In [9) we used (4) and (4)' but with

Etu(x) =N D:u(x) for € > 0 and v ¢ {+,-} .
. we

in place of D:u(x)- Since these sets are larger than those given by (2) and (3), the

notion defined in [9) is stronger than that given here. 1f, for example,

F(x,r,*) € BUC(B;) for R 20, x €  and r € R then the notions are equivalent.

R

G

(1i1) The definition of strict viscosity sub and supersolutions apparently depends on ;:uj
..‘:.‘.

the choice of norms in V and v'. We are taking the norm in v' to be the dual of the ::;e
. VoY

norm on V. To obtain a notion invariant under changing the norm of V or V to an a-r

equivalent norm one would have to allow |q] < Ce in (4) and (4)'.
(iv) Many variants are posgsible: One may replace lql ¢ € by any e£-neighborhood of the

origin containing the bhall B; and even allow this neighborhood to depend on x. One

could algo require (4) and (4)' to hold simultaneously for all equivalent norms on V




with the corresponding dual norms on V.. One may still prove uniqueness using many of

thegse various notions.
(v) If u is Aifferentiable at x, then D:u(x) - B'(Du(x),e). Hence 1if P(x,u(x),Du(x))

) = 0, then (4) and (4)' also hold at x.

To begin the theoretical development, we will prove that the basic stability
property of classical viscosity solutions is enjoyed by strict viscosity solutions;
that is this class of solutions is stable (c'osed) with respect to the topology of
local uniform convergence. In fact, we prove a little more below. Here and later,

expressions like a, + a mean lim a_ = a. We will say a sequence of functions £, ona

n ase M

subset  of a metric space converges locally uniformly ( or fn + £ locally uniformly)

on  to a limit f if each polnt x ¢ fl has a neighborhood O such that f (y) + f(y)

uniformly for y € O and that fn converges continuously to £ (or £, + £ continuously)

: on Q1 if whenever f 3 x, * x € Q, then £ (x;) * £(x). In the event that the functions
: f, also depend on some parameters A ¢ A, it is clear what one means by £  + £ locally
i uniformly or continuocusly, uniformly for X € A,
: While continuous convergence to a continuous limit is weaker than local uniform
. convargence, we do not have any applications in mind at the moment for the added
generality provided by formulating one of the hypotheses in the following proposition
' in terms of continuous convergence.

Proposgition I.1: Let ¥ > 0, u,, u € C(R) and Foo FeC( xRx v') for

n= 1,200, . Lot u be a strict viscosity solution of F, € 0 (respectively, F_ > 0)

n
up to Y in 2 and assume that

(5) u, *u lc~ally uniformly and F (°,*,p) + F,(°*,*,p) continuously

on 1 x R uniformly in p € B; for R > 0. Then u is a strict viscosity solution of F € 0
respectively, F > 0) up to Y in Q.

Proof: We treat the subsolution case. Let € > 0, x € 2 and p ¢ D;u(x). According to

the dafinitions and asumptions there will then exist an r > 0 and

- DR S Te e e T e T LN e e
L WAL AT TR W A, I UG TR TR AT ST S ST AT O AP

ot e Ne T S e T et e
LR R
ASA el ala aatata atntaa




RS 1 A

a4

o F

€ ¢ {(0,€) such that

(6) uly) = (p,y - x) - €]y - x| € u(x) for y € B(x,r)

and u_ + u uniformly on B(x,r). Choose n ¢ (£,€) and set

#ly) = uly) = (p,y -~ x) - nly - x|,

2 AARK

Pply) = u (y) = (p,y = x) - nly - x|,

for vy € B(x,r). Put

T
LR

v -
J-

(n § = sup lun ~ uf
B(x,r)

i. (8) ?,(x,) > sup (¢n - Gn) .
o B(x,r)
;: It follows from Ekeland's theorem [13] that there is a Yo € B{x,r) such that
i (9) oaly,) 20 (x) 2 sup (o - Gn) and
e B(x,r)
o.(v) = 8.1y - vl <o ly,) for y € Blx,x).
:; In view of (6), (7) we see that
_._ (10) Paly,) € oly ) + 6 < p(x) + §, = (n - E)[yn - x|
. while
(11) Pn(¥y) 2 @(xy) 2 e (x) = 8 > elx) - 28

Hence |yn - x| < 3(E - n)"16n and so y, * x as n + =, In particular, y, is in the

tnterior of B(x,r) for large n and it follows from the second part of (9) that

u (y) = (p,y = x) = (0 + 8 )|y - yo| < ulyy) - (poy,
for v ¢ B{x,r), Thus p ¢ D;un(yn) for n large enough and

inf Pn(yn,un(yn),p + q) €0 for € € Y.
lal<e

The result follows upon invoking the assumption (S).

We remark that slight changes in the proof above allow us to weaken the assumption

that u  *u locally uniformly. 1Indeed, in the case of subsolutions (supersolutions) it

and, assuming that 6n > 0 (the other case being trivial), choose X, € B{x,r) so that

v e
e

'f"ff "
L g
ey

s
(4

-
ey
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is enough to have (u, - wt o (respectively, (u = un)+ + 0) locally uniformly and

u. * u pointwise.

n
We next observe that viscosity solutions are strict viscosity solutions if the

norm of V is differentiable off the origin and V is RN,

Proposition 1.2: Let V be RN and the norm of V be differentiable off the origin. Let

P eC( x Rx V') and assume that if x, + x and r, + r, then F(xn,rn,p) + Fi(x,t,p)

n
uniformly for p € B; for R > 0. 1If u € C(R) 18 a viscosity subsolution (supersolution)
of F= 0 on Q, then it is an strict viscosity solution of F € 0 (respectively, F > 0)

in Q.

In fact, this was shown in the appendix of [9] if V is finite dimensional with ;i
in place of D: {see Remarks I.t1{ii) above). The proof given in (9] adapts in a
straightforward way to the current case.

Our next task is to present the uniqueness results. By contrast with Part I, we

will no longer assume that V is RN. However, we will still require the existence of

differentiable norm~-like functions on V so that, in particular, Proposition I.1
holds. A well-known example of a space which is not RN but which admits such functions
is provided by the space ¢, of sequences which converge to 0.
Example: The space ¢y of sequences {an)n>1 satisfying a; + 0 has a norm which is
infinitely differentiable on the complement of the origin - gee, for example, M. Leduc
[17] = but it is not RN. 1Indeed, to see that the form of the Radon-Nikodym property of
greatest interest to us fails, the reader may easily check that the function

stf{a } ) = sup (1 = /n)fa|
has the property that no perturbation of it by a continuous linear functional attains
its maximum value on the closed unit ball. Thus, by Stegall's result {23}, ¢y is not

RN.

The uniqueness results will be formulated in the context of the model problems

(SP) and (CP). The rather unpleasant task of formulating the conditions on the

~9-
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Hamiltonian H in these problems is taken up next. As in Part II, we will state '
conditions on H(x,t,r,p) where H:V x R x {0,T] x V. + R and interpret these in the
context of (SP) as applied to a t-independent Hamiltonian H(x,r,p).
We will make the following hypothesis throughout the paper and simplify the
presentation by nevermore referring to it:

THE BLANKET CONTINUITY ASSUMPTION: H is bounded and uniformly continuous on

B * [0,T] X [-R,R] x By for all R > 0.

In the statements below, a modulus is a continuous nondecreasing and subadditive
mapping m:{0,*) + [(0,=) with m(0) = 0 and a local modulus is a continuous mapping
o:[0,») x [0,®) *+ [0,%) nondecreasing in both variables such that r + o(r,R) is a
modulus for each R > 0. The assumptions we will use on H involve the existence of
certain auxiliary functions

A:¥v x v + R, Vv:V > R and u:vV + R
which satisfy the conditions (C) below and with respect to which H will be required to

satisfy combinations of the conditions below:

(H1) For all R > 0 there is a constant Cg such that
H(x,t,r,p) = H(x,t,r,p + ADV(x)) < Cp

for x €V, t € [0,T], r € R, p € By, 0 € X <R,

(H2) There i3 a local modulus 0 such that
H(x,t,r,p) - H{x,t,r,p + ADu(x)) < o(X,|p|)

*
for x €V, t € [0,T), T ¢ R, peV , 0< A< 1,

(H3) There ig a modulus m such that
H(y,t,r,-kdy(x,y)) - H(x,t,r,xdx(x,y)) < m(Ad(x,y) + d(x,y))

for x #y eV, t € {0,T], r ¢ R, p € V', and 0 € X and A(x,y) < 1.

~-10-
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(H3w) There is a local modulue X such that

H(y't,!‘,-’\dy(xgy)) - H(x,t:l’:xix(x.y)) < K(d(x,Y).H

for x fy eV, t € (0,7, T €R, pe€ V' and 0 € )
(H4) H(x,t,r,p) is nondecreasing with respect to r for (x,t,p) ¢ Vv x [0,T] X v'.

The functions 4, U, Vv satisfy the following conditions which we collectively denote by
(c).
(c) d, u, v are Lipschitz continuous, a{x,y) is differentiable in x for x # y
and in y for y # x, Vv, U are nonnegative and differentiable on V, u(x) + =
as |x| *» =, v(x) » |x| for large |x|, d(x,y) » |x - y| on Vv x v, ana
d{x,x) = 0 on V.
We observe that (C) implies (0), for if 4 has the properties of (C), then setting
N{x) = d(x,0) yields a function satisfying the requirements of (0).

Theorem I.1 (Uniqueness for (CP)): Let (H2), (H3), (H4) and (C) hold and Y > 0. Let

f ¢ cb(v x [0,T)) and u, v € BUC(BR x [0,T)) for all R > 0. Let u and v be,
respectively, a strict viscosity solution up to Y of

u, + H(x,t,u,Du) € 0 and v, *+ H(x,t,v,Dv) + f(x,t) > 0
in v x ]J0,T(. Let u and v be uniformly continuous in x uniformly for t ¢ [0,T}.
Assume also that either (H1) holds or that u - v is bounded €rom above. Then

+ t +
(12) u(x,t) - vix,t) € sup (ul{y,0) - v(y,0)) + f sup f(y,s) ds .
yev 0 yev

Finally, if u or v is Lipschitz continuous on V uniformly in t € [0,T], then (12) still

holds if (H3) is weakened to (H3w).

Theorem I.2 (Uniqueness for (SP)): Let (H2), (H3), (H4) and (C) hold. TLet

£ € C(V). Let u, v e UC(V) and be, respectively, a strict viscosity sotution of
u + H(x,u,Du) € 0 and v + H{x,v,Dv) + £f(x) > 0 up to Y. Assume also that either (H1)

holds or u = v is bounded from above. Then

-1~
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(13) u(x) - v(x) < sup f(y)+ for x €V .
yev

Finally, if u or v is Lipschitz continuous on V, then (13) still holds if (H3) is

weakened to (H3w).

Remarks I.2:

(1) The reader will find some discussion concerning the formulation of the hypotheses
(H1) - (H4) in Parts I and II as well as examples illustrating the scope and necessity
of various conditions.

(ii) (H3) may be generalized as in M. G. Crandall and P. L. Lions [9].

(iii) If (0) holds and H satisfies

(14) H € uc(v x [0,7] x R x Bp)

for all R > 0 and there is a modulus m such that

(15) lH(x,t,r,p) - H(y,t,r,p)| < m(|x - y|(1 + |p|))

for x,y ¢ Vv, t ¢ {0,T), r €« Rand p ¢ V*, then (H1), (H2) and (H3) hold with

dlx,y) = Nix - y), v, u= (1 + n2)1/2.

(iv) A simple but striking and useful extension of the above results comes about as
follows: In the case of Theorem I.2, assume that there is a nondecreasing function g(e)
> 0 such that g(0+) = 0 and rather than being a strict viscosity solution of

u + H{x,u,Du) € 0 in V, u € UC(V) satisfies

u(x) + inf H(x,u(x),p + q) € g(&) for x € V, p € D:u(x) and 0 < e < v ,
lal<e

while v satisfies the corresponding weakened notion of strict viscosity solution of

v + H(x,v,0v) + £ » 0. Then the assertions of Theorem I.2 remain correct. A similar
remark holds for Theorem 1.1. Indeed, in the case of Theorem 1.2, one just observes
that for € < Y u is a strict viscosity solution of u + H(x,u,Du) < g(€) up to €, ete.,

applies the previous result and lets € + 0.

We will illustrate the main new ingredient in the proof of these theorems, which
i{s the use of Fkeland's principle at the point in the argument where Stegall's result

was previously used, in the simplest case. That is, we will assume u, v ¢ BUC(V) are

-12-
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strict viscosity solutions of [ A

Ay

(16) u + H(Du) < 0 and v + H(Dv) > 0

o

)
o
\.'.".

where H ¢ UC(8p) for all R > 0. Assuming, moreover, that (0) holds puts us in the g

b &

situation of Remarks 2(iii) with m = 0. We follow the arguments of Part I with the

:

change just remarked on and modified to reflect the point of view of M. G. Crandall,
H. Ishii and P.-L. Lions (6]. Let 2 = V x V and for z = [x,y) € 2
w(z) = u{x) = viy).
Then it is straightforward to check that w is an strict viscosity solution of
(18) w + H(Dw) < 0 on z
where He cv' x vy is given by
H((p,ql) = H(p) - H(q).
Define & by &([(x,y]) = BN(x - y)2 where B is a parameter to be chosen. Then
(19) 8(z) + H(D&(2)) > O
pointwise in Z (and so ¢ is a strict viscosity solution of the same inequality). (Of
course, (19) holds trivially here since ﬁ(DO(z)) 2 0, but in more general cases one
constructs corresponding differentiable supersolutions.) We want to prove that
u € v. It will gsuffice to show that if B is large, then
wlix,v]) = ulx) = v(y) € ([x,y]) on & = {[x,y}: |x - y] < 1}

since O([x,x]) 3 0. Let n, § > 0 and ¥ € O satisfy

w(z) - 8(z) » sup (w - 9) - § and

Q
(20)

wiz) = 8(z) = nlz - 2| < w(z) - &z) for z € 0
The existence of z is from Ekeland's theorem. Using the boundedness of u and v, one
sees that if 3 is large and § small, then Z ¢ Q. The second inequality then implies

that D¥(z) € Dgw(i) for € > n. Hence, (19) in the pointwise sense and (18) in the

strict viscosity solution yields

-13-
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w(Z) - 8(2) < w(3) - H(D(Z)) < wl3) + inf H(DO(E) + [p,ql) +

'Pll‘q"c
sup  |H(D&(Z) + [p,q))-H(D&(z))| ¢ su |A(D&(Z)) + [p,ql) - R(D(Z))].
Ipl/lal<e pl.lal<e

In conjunction with (20) we thus have

sup (w - 9) < sup |H(D#(2) + (p,q)) - H(D®(2))] + &
a Iel,lql<e

Since ¢ is Lipschitz continuous, H is uniformly continuous on bounded sets and n, § and

€ > n are arbitrary, the result follows upon sending € and 6 to 0.

-14-
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1.2. Existence and Relations With Differential Games.

We begin with an existence result for the Cauchy problem (CP).
Theoxem I.3: Let T > 0, v € UC(V). Let H satisfy (H2), (H3) and (H4).
(1) 1If (H1) holds, then there exists a unigue strict viscosity solution u of (CP) such
that u € Buc(BR x {0,T]) for R > 0 and u is uniformly continuous in V uniforaly for
t e [0,T].
(11) If ¢ € BUC(V), H(x,t,0,0) € C(V X {0,T]1), then there exists a unique bounded
strict viscosity solution u of {CP) such that u ¢ BUC(BR x [0,T])) for R > 0, and u is
uniformly continuous in x € V uniformly for t ¢ {0,T].

Bxistence for the stationary problem requires some additional assumptions on H.
For examplae:
(H5) There is a function ¥:{0,=) x [0,») + {0,») which is nondecreasing in its

arguments such that

H(y,r,-kdy(x,y)) = H(x,r,Ad, (x,y)) € F(X,A(x,y))
for x, ye V, r € R, A > 0 and a nondecreagsing uniformly continuous map
G:[{0,=) * R which is continuously differentiable on (0,») and satisfies

G(r) » F(G'(x),r) on (0,=),

Theorem I.4: Let H satisfy (H2), (H3) and (H4).
(1) 1If (H1), (45) hold there is a unique strict viscosity solution of (SP) in UC(V).

(11) TIf H(x,0,0) € BUC(V), there exists a unique strict viscosity solution of (SP) in

BUC(V).

Sketch of proof of theorems I.3 and I.4: Again, the outline of the existence proof in

Part IT can be followed through Sections 2 and 3 of [10]. However, the arguments of
Section 4 must be modified substantially to accommodate the strict viscosity notion.
We will explain the required modifications in the following model case:

(20) u + H(x,Du) = 0 in V

where H is bounded and Uipschitz on V x V'. One can still formulate differential games
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whose value functions are viscosity solutions of (20) (as was shown in [10]), but we do
not know how to show directly that they ace strict viscosity solutions of (20) -
indeed, depending on which game we choose we will only be able to show that the value
function satisfies elther

u(x) + inf H(x,p + q) €< LE for x€¢ V and p ¢ D:u(x),

lal<e

u{x) +|sup H{x,p + q) > 0 for x € V and pe€ D;u(x) .
ql‘E

+
u(x) + inf H(x,p + q) € 0 for xe¢ V and p ¢ Deu(x),
lal<e

u{x) + sup Hi{x,p + q) > - Ce for x € V and pe€ b u(x)
lal<e ¢
where L is a constant depending on H. However, this is enough, because we can use the
concluding remarks of Section 1 to deduce that the two value functions coincide, and
thus we have a strict viscosity solution solution of (20).
We now explain how to form the differential games we use. For R > 0 put
ﬁR(x,p) = inf'{ﬂ(x,q) + Llp - ql}

(23) q€Bg

Hp(x,p) = sup’{ﬂ(x,q) - tlp - q|}
q€Bp

where L is a Lipschitz constant for H with regpect to p. Clearly

- * - *
(24) Ho(x,p} ? H(x,p) > Hp(x,p) on V x V and Hy = H = Hg on V X Bg.
Next we observe that we may write ﬁR' H, as follows:

ﬂR(x,p) = 1nf. sup{ H(x,q) = (p,z) + (q,2)}
(25) quR zeBL

ﬂa(x,p) = sup_ inf{ H(x,q) - (p,2) + (q,2)}.
q€Bp  z€By

The developments which follow will produce "value functions" GR' up € BUC(V) which are

Lipschitz continuous with constant L associated with these representations of ﬁR and Hp

-16-




and corresponding differential games. These functions will be shown to satisfy

Tpfx) + inf Bo(x,p + q) < 0 for x € V, p € Diulx), € > 0,
(26) lal<e

Ug(x) + sup fp(x,p + q) > -Le for x ¢ V, p € Dgu(x), € > 0,

lql<e
and
Up(x) + in Ho(x,p + q) < Le for x € V, p € Diulx), € > 0,
lal<e
(27)

up(x) + sup Ho(x,p + q) >0 for x eV, p ¢ Deu(x), € > 0.
la]<e

We would prefer to have H in place of the approximations RR, ﬂa in the relations
above. To attain this, we need only recall (24), show (by construction) that G“ and by
are Lipschitz with constant L and then observe that
Dgw(x) C By
whenever w is Lipschitz with conatant L. Putting these things together, the arguments
q + p in (26), (27) belong to B; + 2¢e! and thus we may replace HR' 8y by H in (26),
(27) provided L + 2¢ < R.
We next build the value functions ER, up which satisfy the above conditions.
Consider the following sets of “"controls":
Q = {strongly measureable maps q:(0,%) + B; }
Z = {strongly measurable z:(0,*) + B, }
and the corresponding strategies
z = {nonanticipating maps ;:Q + 2}
where a strategy is nonanticipating if whenever two controla agree a.e. on some
interval {0,a), then their images by the strategy agree a.e. on the same intecrval. We
set
fix,z,q) = - H(x,q) - (q,2)

and for q € Q, z € Z, and t 2 0

-17-




N VA
. A0
XD

r'. G

-} s ‘

tA
X, = x + | zlq)(s)ds - B
d AN
. 0 -0
N,
g S
\ o
g where we suppress some of the arguments of X in the notation. Then put :.;.'.:
. ' 4
g e
- . e
g(x) = inf sup [ £(x,,z(q)(t),qle))e at ‘
= z€Z qe€Q
- .
" Sp(x) = sup inf [ £(X,zlq)(t),q(t))e tat .
- 2€Z q€Q
. It is immediate from these formulae that GR, ug are Lipschitz continuous on V with
A
: constant L. We now have to check (26) and (27). The crucial dynamic programming
. principle reads
) h - - _ -
up(x) = inf sup {J f(xt,z[q](t).q(t))e at + un(xh)e }
S z2€Z qe€Q 0
- and we immediately deduce from it that
: 1,- - 1 " ~ -
sup inf (Fagx) = w(x)) -+ [ £x,zlq)(t),q(t))dt) + up (x) = Y(h)
z€Z qe€Q
X where Y(h) + 0 as h + 0.
We may now check the second inequality in (26) very easily. For notational
‘_ simplicity we now gset w = U,. Let € > 0, x € V, and p ¢ Dgw(x). Then there are r, h,
o) > 0 such that
. wly) > w(x) + (q,y - x) - ¢ly - x| for ly = x| < r,
and
- [X, - x| €< r for all z ¢ Z and q € Q if h < hg. )
The above dynamic programming equality then implies that for h € h; and any fixed
q € B; (regarded as a constant control), we have ‘
: 1 h 3 h - ::\‘.
) sup ((q - pop [ zlalte)) + elx [ zlql(edae]) + uix,q) + wix) > - y(h). T
0 0 —
- This implies, upon letting h tend to 0, that
) -18-




Llq -~ p| + Le + Hix,q) + w(x) > 0,
and since q € B; is arbitrary, we are done.
We prove the first inequality of (26) arguing by contradiction. let ¢ > 0,
xeV, pc¢€ Dzw(x) and
‘%Tgeﬁn(x.p +n) + wix) >4y > 0.
This implies that

inf inf { Llp +n - g| + HOx, @} + wix) > v
qeBy |nf<e

or

inf sup { - (p - q,2) - elz| + Hix, @] + wix) > 4y.
qeB 2€B

R L
We can then choose for each q € n; some z(q) € By (in a strongly measurable way) such
that
- (p - q,z2{q)) - elz(q)| + H(x,q@) + wix) > 3.
Therefore, for each control g € Q we have
- (p = q,z2(q(t))) - elz(q(t))] + H(x,q(t)) + w(x) > 3V a.e.

Defining the strategy z by z(q](t) = z(q(t)), we integrate this inequality over the

interval 0 € £ < h to find

h ~ h ~
sup |- %(p - qle),x - x) - %I |ztql (e} |ae ~ ;‘; [ £ix,zlq) (t),q(t))at}
qeQ 0 0

+ wix) » 3y .

3ince

1 h ~ ‘ h ~ 1

n folz(q)(t)ldt > |K Io zlql(t)at| = I5x, - =]
we finally conclude that

h -
inf sup | Hp,x - x) - edx - x| + 3 tix,zlql (8),q(e))ae) + wix) > 3.
h h h
2€Z qe€Q 0
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This inequality and the dynamic programming equality are inconsistent, establishing the
result. The arguments to establish (27) are entirely parallel, and we end the
discussion here.

We now describe the relations between differential games and strict viscosity
solutions more generally. To have a simple presentation, we will consider only the
case of infinite horizon problems (which correspond to stationary Hamilton-Jacobi
equationg). Analogous considerations hold for the relation between finite hortizon
problems and the Cauchy problem for Hamilton-Jacobi equations.

Consider metric spaces A and B and let b and f map V X A X B into V and R
respectively. We assume that the maps (a,8) + b{(x,a,B) and (a,8) *» £(x,a,B) are
continuous on A x B for each x € V and the following boundedneas and continuity
assumptions hold:

(28) l£(x,3,8) - £(y,a,8)! € w(lx - y|) for (x,4,8) ¢ V x A x B

for some modulus u;

(29) I£(0,a,8)" + |b(x,a,B8)! < C for (x,a,8) ¢ V X A x B,
and
{30) b(x,a,8) - bly,a,8)! ¢ colx - y| for x,y €V, a € A and B € B

for some constants € and 7,. Differential games are constructed from this type of data
and the sets of controls and strategies defined next.

A and B will denote the set of controls for the a-player and the B-player
respactively; i.e., A (B) is the set of strongly measurable mappings of [0,») into A
(respectively, B). 'We will denote by R and i the strategies for the a-player and
2-player. That is, ; is the set of nonanticipating maps from B to A, etc. (The exper"
realer will norice that «#e are using Elliot-Kalton's formulation of differential games
- see 14} - in thia paper, but this is by no means compulsory.) Fixing } > 0, the
appar and lower values issnciated with our game are given by:

’

-Aig
(1N alx) = 11* sup f(XS,IVRY(s),°(s))e ds for x ¢ V ,

.. n
WA 7B

-20~-
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and

(32) a(x) = sup inf f(xs,c(s),ﬂlu](s))e-ksds for x €V
Rade 5

BeB acA
where the state process X satsifies
t ~ ~
Xg=x+ [ b(x_,a(s),B(s))ds for t > 0
0
with ¥ = 8, @ = a[B) 4n (31) and & = a, § = B[a) in (32). The following result states

the relationship between Q, u and the Isaac's equations

(32) Au + H(x,Du) = 0 in V
and

(33) Au + A(x,Du) = 0 in V
where

Hix,p) = inf sup {-(b(x,u,%),p) - f(x,a,B)}
BeB aea

and

fitx,p} = sup inf {-(b(x,a,B),p) - £(x,q,8)}
aeA S¢B

L ]
on V xV .
Proposition I.3: Assume that (29), (29) and (30) hold. Then u and u € UC(V) and u = u

(respectively, u) satisfies
+
Au(x) + inf H(x,p + q) < C. = for x ¢ V, p ¢ De“(x) and € > 0

laj<e 0

(34)
Au(x) + sup H(x,p + q) ? -coe for x e V, p € Deu(x) and € > 0

laf<e
with H = A (respectively, H = H). Thus, if V satisfies (0), U (respectively, u) is the
unique uniformly continuous strict viscosity solution of (33) (respectively, (32)).
Proof: The verification of (34) is a straightforward adaptation of the arguments of L.
C. Evans and P. %. Souganidis (15) which, in turn, were the extension to differential

games of a remark of P.~L. Lions [18] when the "¢ - termg" are treated as in the
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. discugslon of GR, L™ above. The fact that u, u lie in UC(V) is easily seen from the

E explicit formulae. Next observe that H, H satisfy (14), (15) so that we may use

E: Theorem 1.2 and Remark 1.2 (iv) to conclude that if there is a uniformly continuous

i strict viscosity solution u of (33) (respectively, (32)), then u = @ (respectively,

- u = u). Again, as remarked in Part II (10), (15) implies (H5) and we may invoke the

existence Theorem I.4 to conclude the proof.

K The above result is not a verification theorem because it uses the existence of

. strict viscosity solutions. In view of this, the fact that (26) and (27) hold for ‘-‘R
and u, may seem surprising - it 18 not, because one can prove directly (and thus in any
space V), for example, that u is a strict viscosity subsolution of (33) if

’ {{b(x,a,8),f(x,a,3):a ¢ A} is convex in V x R for every x ¢ V and 3 ¢ B. In fact, by

. considering generalized controls and/or strategles {(as in P.L. Lions and P. E.

Scuganidis (20)), this may always be achieved.
We conclude this section by showing that for control problems the situation is
slightly better. For purpouses of illustration, we take the particular case in the

above set up in which B = ¢ and b, f depend only on x and a. Thus we consider

MO I

AE
. -A
- (35) atx) = dnf [ £(x_,a(s))e” "ds
:, aeh 0
NS
where
t
X, = x + [ b(x_,a(s))ds for t > 0.
N t 0 s
]
: Proposition 1.4: Assume that (28), (29) and (30) hold with b, £ independent of B and
3
i A > 0. Then the function u given by (35) is uniformly continuous and is a strict
vigscosity supersolution of
A (36) Au(x) + sup { - (b(x,a),Du(x)) - £(x,a)} = 0 in V
: aeA
r N
h and u satisfies
. +
- (37) ‘a(x)+sup{-(b{x,a),p)-¢e|b(x,a)|-£(x,a)} € 0 for xev, ped ulx), € > 0.
> ° 2EN
T
N -22-
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In particular, if C = {(b(x,a),€(x,a)):a € A} is convex for x € V, then u is a stricc

v e— . w v = .- -
.

viscosity solution of (36). Finally, if V satisfies (0), then u is the unique strict

viscosity solution of (36) in UC(V).

We skip the proof, since it consists of straighforward variants of arguments given

. E—— ¢ ¥ € ¢

before (in particular, the verification of (37) is an easy adaptation of the method
given in P. L. Lions [18]). Observe that the convexity of Ty leads to the identity

- sup [-(b(x,a),p) - €|b(x,a)| - £(x,a)} = inf sup {-(b(x,a),p + q) - £(x,a)} .
I aeh lal<e aea
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I.3. An Example in a Nonsmooth Space.

The main point of this section is that if V does not have a differentiable norm
(or, more generally, does not satisfy (0)), then the various notions of viscosity

solution we have been using are not a suitable basis for a theory. This will be made

clear by means of an explicit example in the space 1! of summable sequences., Since 1!

does have the Radon-Nikodym property (it is separable and is the dual of c¢;, and all
separable dual spaces have this property), the difficulties to be exhibited are

entirely associated with the lack of "smooth" functions on the space.

We will let ¢ denote the norm | ﬂ1 of 11

o

1 € 11.

ax) = Ixl = ) |xni for x = {x_}

n=1

The dual space of 11 is 1° and carries the dual norm

o
ixl = ﬁgg‘pn| for p = {Pn}n>1 €l

The example involves the Hamiltonian H:l1 x 1% » R given by

(38) H(x,p) = =~ipl_+ 1 ~ olx).

We ~laim that u = ¢ is a strict viscosity solution of the equation

(39) u + H(x,Du) =0

vaile & = (1/2)(o + 1) is a strict viscosity solition up to 1/2 of

(40) l’:\“‘H(X,D\‘.\l) <0

since u € o holds on the sphere (Hxl1 = 1} but not on the ball, the (boundary-value

problem analogue) of Theorem I.1 does not hold.
To verify the claims, one first observes the relatlions
- o :
D o(x) = {p €1 'pnl < 1 and p, = signx  if x, #0 },
D eix) = [p €1 T pebdox) and |p - pla < €],

fnrr all € > 0 and x € 11, while

DIo(x) = b i€ 0 ¢ & ¢ 1.

=24~
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It is then straightforward to see that u = ¢ is indeed a strict viscosity solution up
to 1 of (39). 1t is completely trivial that u is a strict viscosity solution up to 1/2
of (40), since Dzu(x) = ¢ for € < 1/2. (Observe that for A, € > 0,

DKEXu(x) = XD;u(x).) This completes the discussion of the example.
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I1. FURTHER REMARKS ON EXISTENCE RESULTS

II.1. Coercive Hamiltonians.

This section is devoted to variants on the existence results proved in Part II for
(SP) and (CP). The distinguishing property of H which will be used in this development
will be an assumption that H is large enough "at =" and this will allow us to relax
(#H3) to (H3w). For simplicity we will consider only bounded data and require V to be
RN, although we fould proceed in the context of the strict viscosity solution theory.
We will also use the blanket continuity assumption of Section 1.

For the stationary problem (SP) we have:
Theorem II.1: Let V be ®N and (0) hold. Assume (H2), (H3w), (H4) and that there are
constants Ry, C5 > 0 such that
(41) |8(x,0,0)} < cy and H(x,r,p) > Cq for |p| > Ry, || < o and x € V.
Then there exists a unique bounded viscosity solution u € BUC(V) of (S). Moreover, u

is Lipschitz continuous on V.

For the Cauchy problem (CP) we will assume that for a certain constant M given
later

(42) H(x,t,r,p) *+ « as Ipl + o yniformly for (x,t,r) € Vv x [0,T] x [-M,M].

(43) For each R > 0 there is a Cp such that
H(x,t,r,p) € Cq

tor (x,t,r,p) €¢ v x [0, T} x [-M,M] X B;.

(44) There is a modulus m such that
H(x,t,r,p) € H(x,s,r,p) + m(t - 8)
for 0 < g <t <T, xeV, |r| <Mand p e V.

We have:
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* Theorem 11.2: Lat V be RN and (0) hold. Assume (H2), (H3),, (H4) and y
N

[a(x,%,0,0)] < c4. ;IZ;::::I

for some conatant Cy. Let ¢ € BUC(V), )""\;
Er

cy > -3p|o| and ¥ = CoT + Cq. Al

Let (42), (43), (44) hold. Then there is a unigue bounded viscosity solution of (CP) ié
:.:'l

which is uniformly continuous on bounded sets and uniformly continuous in x € V :;::{
. \;.:‘\‘

uniformly in ¢t € [0,T]. Moreover, if ¢ is Lipschitz continuous on V, and m(r) = Cr for ‘¢:;}'
."_\‘. X

some constant C, then u is LIpschitz continuous in x uniformly in t ¢ (0,T].

Remarks II.1:

(1) Uniqueness is not a direct consequence of the uniqueness results in Parts I and
IT, but follows from these results combined with the existence of (approximate)
Lipschitz continuous viscosity eolutions .

(ii) 1It will be clear from the proof that we only need to assume (H2), (H3w) for
fr] € cp in Theorem 1I.1 and for |r| < M for Theorem II.2, since it is only in this
range that the various constructions take place.

{111) 1In the case when V = R the analogous results were obtained by G. Barles [4],
extending previous results due to P. L. Lions [18], ([19].

Sketch of Proof of Theorem II,1: We will make a number of reductions as in Part II

({10)) and take H(x,p) to be independent of r for simplicity as well. Observe that if
we prove the existence of a bounded Lipschitz continuous viscosity solution of (SP)
under the assumptions, then it will be unique among BUC(V) viscoslty solutions of (SP)
by the results of Part I ({9]). We begin the existence arguments by choosing C; > Co
and truncating H at Cq1 that is we xveplace H by

(45) fitx,p) = min(max(H(x,p),=C4),Cq).

Note that

R(x,p) > C, for [p{ > Rgy x €V

becausa H satisfies the same condition. For n= 1,2,... and ¥ as in (0) set

PR
-y
- F
~
>

(46) Xp(x) = (1 = aN(x))*

- F=-

oS

- e At o e
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and then

(47) Hy(x,p) = X, (0f0x,p) + (1 = x (x))CeRy™ ]
Clearly

(48) H (x,p) > Cq for |p| > Ry, x € V

and H, € BUC(V X B;) for R > 0. To form the next approximation, we fix Ry > Ry and let
T be the projection of v' on 3;1, that is
Tp = p if |p| < Ry and Tp =(Ry/|p|)p 1f |p] > Ry.
Then put
Hy(x,p) = H, (x,Tp).
Since ﬁn € BUC(V x V'), the results of Part II (recall Remark I.%1 (iii)) provide us

with viscosity solutions u_,k € BUC(V) of

n

up + A (x,Pu ) = 0 in V
and by the comparison results

lug| < sup |8,(x,0)] < cq.

Now one uses the equation, (48) and the definition of ﬂn to conclude that u, is a
viscosity solution of
(49) [pu,! € Ry on v,
sing this we will show that
(50) u, is Lipschitz with constant R,
(Lemma II.1 below). It follows from this that D;un(x) C B;OEor all x and then that u,
is & viscosity solution of
(51) u, + H,(x,Du) = 0 on V.
Since K + H uniformly on Bp X v for all R, we may invoke the various assumptions,
(50) and (51) to deduce from the convergence theorem in Part II ([10]) (restated to use
the uniform Lipschitz continuity (50) and (H3w) rather than (H3)) to conclude that u,

converges uniformly on bounded sets of V to a viscosity solution u of (SP) which

satisfies (49) and (50).

-28-
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It remains to eatablish:

- »

. (l
{ Lemma IT.1: Let V be RN and satisty (0), R > 0 and u € BUC(By) for all R > 0. i
p L. <
t (i) Let w € V, £ € BUC(Bg) for all R > 0 and u be a viscosity solution of ; ¢\K1
| r

&

(52) (Du,w) € £(x) in V.

Then if 8 > 0

{ (53) ul(x + sw) = ulx) < f:f(x + tw)dt in V .
f (L) If L > 0 and u is a viscosity subsolution of

(54) Joul < L in v

then

(55) julx) - uly)] € L|x = y| for x, y € v.

Proof of Lemma II.1: The assertion (ii) ia a consequence of (i) since (54) implies

that u is a viscosity solution of (Du,w) € C in V for all w ¢ By. There are several
arguments which can be used to prove (i). One way is to consider u(x) as a time-
independent subsolution of

(56) vy *+ (Dv,w) = £ in Vv x [0,®)

which satisfies the intial condition

(S87) v(0,x) = u{x) in V.

Then set v(x,t) = u(x - wt) + gg(x - ws}ds and check that v is a viscosity solution of
(56) satisfying (57). Since v € BUC(BR x [(0,7]) for R,T > 0, the proofs of the
comparison results of Part I ([9]) adapt to establish u € v. (The requirement that u
or v be uniformly continuous in x uniformly in t in the results of Part I can be
replaced by using finite speed of propogation - the finite dimensional results of (7]
extend to infinite dimensions - or by the general results of (12].)

Sketch of Proof of Theorem II.2: The asserted uniqueness follows from the

approximations congtructed during the existence arguments. To prove the existence we
will use the method of G. Barles [4). Let € > 0 and consider the function
t

1
HE(x,t,r,p) == ) inf H(x,A,r,p) 4t
t-g T1<A<E

PP
P

=29
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where we put H(x,t,r,p) = H(x,0,r,p) for ¢t € 0. In view of (44) we have the following

relations:

(1) H(x,t,r,p) » Hc(x,t,r,p) » H(x,t,r,p) - wle),

o NN

(58)

- (11) H (x,t,r,p) ~ H_(x,8,6,p) ¢ L2 (¢ - g) for 0 cmct <.

& Indeed, to prove (58) obgerve that if t > 8 + ¢, then the difference is bounded by
- w(t - 8), while if t < 8 + € we may write (surpressing the variables x, r, p)

t
- H(6) = H () =2 [ ( inf H(A) = inf H(A))ar +
N s 1At 1-€<A<sg
- (59) .
- + 2 [ (inf 8OO - inf mOO ar
t-€ T<ACE 1<A<s

- and observe that the second integral is nonpositive while the first one is bounded by
w(e)(t - 8)/c.

Next we claim that for each Lipschitz continuous approximation 9c of ¢ (e.g., the

inf convolution ¢ (x) = 125 (o(y) + |x - y|/e) there is a bounded viscosity
Y

solution u,. of

€

- gy *+ He(x,t,Due) = 0onV x (0,T], ue(x,o)’- ¢€(x) on V

which is uniformly continucus on bounded sets and is Lipschitz continuous in x ¢ V

uniformly in t € [0,T]. Once this claim is established, then it is easy to show that
~ such a golution is unique, satisfies luel <MonVXx [0,T] and, using the comparison
results of Part I ([9}),

- < (w{€) + w(n)IT + (€ + n).
vxs[g‘,)'r] o ““,

Hence u. converges uniformly to some u with the properties asserted in the existence e

' theorem. Moreover, the uniqueness results follow upon comparison of another assumed .

»
v

solution with u., which is Lipschitz continuous in x.

v
.

"
¢

42,00,

SR
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. The existeace of u, is obtained by using reductions of the sort outlined in the
proof of Theorem II.1 in conjunction with a priori estimates we now describe. First of

ai1i, comparison shows that u, is bounded by M. Next, one shows that there is a

constant C. such that

(60) uc(x,t + h) > ue(x,t) ~ Cch for h > 0.

This follows from (59) and comparison results - obgerve that the inequality will hold
at t = 0 since 9¢.(x) - ct is a viscosity subsolution for large C (use (43)). Then one
uses the equation satisfied by u, and (42) to obtain bounds on |Due| uniform in t.
Using these estimates and the methods by which they are obtained, the existence of u,
is established using reductions similar to the ones employed in the proof of Theorem

I.1.
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I1.2. Remarks on Paedo - Galerkin Approximations.

The main thrust of this section is that Galerkin procedures, naively posed,
dramatically fail to approximate the solutions provided by the theory we are
developing. The search for of convergent finite dimensional approximation procedures
remains an interesting open area in the subject.

We will restrict our attention in this section to the case in which V ig a
separable (redl) Hilbert space with which we idantify the dual V‘) V. = V. Thus ( , )
will be the inner-product of V. TULet us consider a Hamiltoninan H(p) which is a
function of p € V alone and is uniformly continuous on bounded sets. It follows from
the results of Parts I and II that for each ¢ € UC(V) there is a unique viscosity
solution of the problem
(61) u, + H(Du) = 0 in V x (0,*), ul(x,0) = o(x) in V
which is continuous on bounded sets and uniformly continuous on V uniformly in t. Let
Vg~ Vy T e ¢« T v, T+ be an increasing sequence of finite dimensional subspaces of V
whose union is dense in V. Denoting the restrictions of H and ¢ to Vn by Hn and L ) it
is natural to hope that the solution u, of

(62) Uy * Ho(DU ) = 0 in Vv X [0,*), u,(x,0) = ¢ (x) on V,

nt
will converge to the solution u of (62). 1Indeed, one might hope to base the existence
theory on this standard Faedo - Galerkin method.

However, we claim that, in general, this method does not converge. In fact, we
next present an explicit example in which the solutions u, of (62) converge to a
funcrion u which is not the solution of (61). We console ourselves with the remark
that the problem (61) should be regarded as a problem in BUC(V) and not in V, so it is
too not so surprising that simply approximating V does not succeed here. The possible
utility of further compactness conditions in this direction remalns to be investigated.
One last comment before the example: There are very many possible choices of Vv , H ,

®, which one might make in any particular problem. The example below shows they may be

choosen badly. The possibility remains that they could be choosen well.

-32-
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Example II.1: Let V be the Hilbert space of square summable doubly infinite sequences

x = {x,} 40 euipped with the norm

% 12 )2

Ixla = (I
2 ny0 n

H(p) = sup (p,y) where E = {p € V: Ipl < t and P, = P, for n # 0}
yeE
where we have used the letter € because its elements are even. Clearly H is convex and

P et e e e

Lipschitz continuous on V. It follows that (60) has a "finite speed of propagation”
and we may consider the problem for arbitrary ¢:V + R which is uniformly continuous on

bounded sets. We choose

9(x) = 2 (x; - xzj )
31
Next we get
v, = {x ev: xy =0 for § >n+ 10or j < ~n -2},
The Lax - Oleink formula for the solution of problems like (61) (see (18] for the

‘ finite-dimensional case ~ the same formula holds here) presents the unique viscosity

golutions of (61), (62) in the form

; (63) u(x,t) = inf {9(y): y € x + tE } for (x,t) € V x [0,)
: and
(64) u, (x,t) = inf {o(y): y € x + tP € } for (x,t) € V, x [0,%)

where Pn is the orthogonal projection onto Vn. Now, fixing x € Vno and let n + » ye

- easily compute that

. n n
" ) 2 _ 7o 2, .22 2
u (x,e) = inf { ] (x, + tk )" = § (x_, + tk)° + t% - (x_ _.+tk )
n j=1 b 3 =1 3 3 n°+1 n, 1 n0+1
n.+ 1
: 222 Moy 2 .2
A -tk ) Ky * Kpeq € 172 }
. 3=1

-33-




DRl M S chut o6 atas S L A AP N I S S S A St A A At D T Ml b A Tt pie auib Mt A Cie A o S A ot pos B she Shu B S ) 2 0 1 B

o 2.2
= o(x) + inf { -2¢ [k |x, - x ny+ 1|x_“0_ o=tk

- 2t
b4 j|x] 1 3

S

n +1
20 k2 *kz ‘1
=1

>0 for 1 € § < n _+ 1}

j a1t 2 0 Xy 0

or

2

+
2 nol ‘f-_
2

n,+1
o) - = - x> i Y x;
3= 3=1

un(x,t) =

n+ 1 n+ 1 2
0)" x2 )1/2 if 0}: xz >§

olx) - t/2{
js‘] j j-] j

with xj = |xj - x_jl (recall that for j = ng + 1, x .4 = 0). Therefore, putting xj =

9

lxj - x.jl s U, converges uniformly on each subspace Vno to the function 4 given by
2 = © 2

w(x)-§-2x§ if Zx§<§-

j=1 j-‘l
ul(x,t) =

S22 % 2 t?

o(x)--’zt[ij] 1f2xj>-2~.
=1 =1

1

The function i is Lipschitz continuous on BR x [0,T) for all R, T > 0, C' on the open

ol 2 @ 2
sets z )(2 < lz"' and Z x2 > -123 and it satisfies (61) on the latter of these sets.
3=1 3 g=1 3
- However, it is not a solution of (61) since
© 2 1/2 ® 2 :2
- ﬁt+H(Dﬁ)=-t+/2(XXj) <Oonzxj<-2-.
. 3=1 3=1
l' Example II.2: Let H be continuous and convex on V. We agsume that for all n large
F enough
L~
! * *
(65) |y ) =H|
b. |vn vn

where * denotes the operation of taking the convex conjugate. This is equivalent to

(65)' sup {(p,y) - H(y)} = gup {(p;Y) - H(y)} for p € vn .
yev, yev
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Obgerve that H(p) = #(|p|) is a particular case for which (65) holds. In this case the
unique solution of (62) is given by the Lax-Oleinik formula [18) as

up(x,t) = inf { oly) + tH ((x = y)/t): y € V, }.
It is clear from this that upi{x,t} > u(x,t) for all x ¢ V and t > 0, but we will see

the convergence is not uniform on balls in Vo Indeed, take
s 2
H(p) = %Iplz. V=12 2 {x = {x o9t L xj <= }
n=1

v, - {x € v: Xy = 04if 4§ 2n + 1) and

-
T{xd _ +x2 +2

1
#(x) = oyl F2wer T ¥ X1}

2

on some large ball, where lul < 1. Using finite speed of propagation, we may assume
this form of ¢ globally and the results will be valid locally. Let e, be the
coordinate vector with 1 in the ntP-glot ana zero elsevhere. One computes that

11
21+¢

u (e, ,t) =
while
ule,t) = 401+ 3t + 3e2 v 301 - a2 - ot - 3a%e 1+ 07 - (ra)D)2

and if a ¥ 0 these two quantities differ for all but a few values of t.
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I1.3. Some Hamilton-Jacobi Equations Arising in the Optimal Control of Evolution

Equations.

In (1], (2], V. Barbu and G. Da Prato study optimal control problems of general

abstract evolution equations in a Hilbert space V, which we identify with its dual as
in the preceeding section. By the usual dynamic programming argument, they were led to
a class of Yamilton-Jacobi equations, a particular case of which ig has the following
€orm:

(66) u, + (Ax,Du) + F(t,Du) = 0 in V x (0,T]

where -A is the infinitesimal generator of a strongly continuous semigroup e tA

, £ >0,
of bounded linear transformations on V and F(t,p) is continuous on [0,T] X V and there
is a local modulus 0 such that (at least) for R > 0
(67) Ir(e,p) - F(e,q@| < at]lp ~ q|,R) for t € (0,T} and p, q € Bg.
Here we show how a simple device tranforms the problem (66) into one which (almost)
fitg into the classes studied in Parts I and II. We are able to solve the resulting
equation and we check that this transformation is consistent with the value functions
of some optimal control problems. However, the success of this device will depend
essentially on the assumption that F in (66) does not depend on x and we therefore
exclude more general equations studied by Barbu and Da Prato in (1], [2].

The device we use to treat (66) is the simple (and purely formal for now) change
of unknown function given by
(68) ulx,t) = vie iy, ¢y,

Calculating formally, one sees that if u solves (66) then v should solve

(69) v, + H(t,%) = 0 in V x (0,T)
where
(70) H(t,p) = F(t,e ™M p)

*
- *
and e tA g the adjoint semigroup (generated by the adjoint -A of -aA). 1If A is

bounded and u and v are related by (68), then u is a viscosity solution of (66) if and

only if v is a viscosity solution of (69), so the correspondence is perfectly

=36~
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sengible. In the general case, we will call u a viscosity solution of (66) if it 1is
given by (68) where v is a viscoaity solution of (69). To support the appropriateness
of this procedure we will subsequently show that when u is given by (68) and v is the
viscoslty solution of (69) which we construct, then u is indeed the value function of
the assoclated optimal control problem.

We begin the discussion of existence and uniqueness for (69). First, H as given
by (70) is clearly continuocus on [0,T] x V and satisfies (67) (that is, H is uniformly
continuous in p on bounded sets), The results of Parts I and II ((9), ([10)) do not
apply directly since in those works we assumed that H was uniformly continuous in t on

bounded sets. This is the case above if A is bounded, but not otherwise. However, an

M 4% ke pun ghy o4 YV"‘Y"TV‘;TUV‘v;‘u‘v“‘y‘vv“y‘r‘y"‘y‘""vv

inspection of the proofs in [9]) shows
was not needed - it is enough to have
and then the uniqueness proof runs as

uniformly on bounded sets was used in

that this continuity property with respect to t
continuity and (66) (Lemma t of [10] =till holds
usual). By contrast, the continuity in t

a significant way in the existence program of

[10) in one step - the verification that certain value functions for differential ganmes
were viscosity solutions of the assoclated Hamilton~Jacobli equations. It does not seem
easy to relax the assumptions to the degree needed here in any general way. However,
the explicit structure we are dealing with allows us to proceed in this case.
Strengthening (67) to

(71) F is uniformly continuous on bounded subsets of (0,T] x V

the existence program of [10) now succeeds for (69), even though we do not improve the
continuity of H in t! The reason for this is that the structure of H, which we regard
as a special case of the general form H(x,t,r,p) = F(x,t,r,S(t)p) where F is uniformly
continuous on bounded gets, satisfies the usual existence and uniqueness conditions and
t + S{t) is a strongly continuous mapping into the bounded linear :alf-maps of V. The
reason that this structure allows one to avoid the difficulty mentioned above is that

{(in the notation of [10)) the quantity (S{t)p,L(q(s))) is now continuous in t uniformly
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for qls) € Q. With thegse remarks, we deduce from the proofs in Parts I ~ II the
following result:

Proposition II.1: Let (67) hold and ¢ € UC(V).

(i) There is at most one viscosity solution v of (69) which is uniformly continuous on
bounded setsa, uniformly continuous in x uniformly in t ¢ [0,T] and satisfies
vix,0) = ¢(x).
(ii) If also (71) holds, then there exists a viscosity solution v € UC(V x [0,T]) of
(69) satisfying v{x,0) = 9(x) on V. Moreover, if 9 is bounded, then
v € BUC(V x [0,T]) while if ¢ is Lipschitz on V, then v is Lipschitz on Vv x [0,T].

We conclude by showing that the above transformation is compatible with optimal
control problems. For simplicity, F will be taken to be a t-~independent convex
function of p € V. Frowill denote the conjugate convex function of F.

To formulate a control problem associated with (66) consider the state equation

a
ac Xt + Axt+ ut 0 for ¢t » 0O, X0 = X

where x € V and the control a lies in L‘(O,T;V)- Then X, is given by

t
-th -(t-s)A
X =e x-[e (t-a)

a ds.
t 0 s
We may define the following value function
t *
{72) ulx,t) = inf { [ F (a))ds + o(x)].
1 0 s t

The notations and assumptions above being in force, we have:

Proposition I1I.2: Let v be the solution of (69) given by Proposition II.1 and u be

given by (72). Then

(73) uf{x,t) = v(e-tAx,t) for x eV, t ¢ (0,T).

-tAx.

Proof: Tet t > 0 and x, y ¢ Vandy = e Set w(y,t) = u(x,t) so that w is given

by the formula

=38~
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[

t t
| * -l -
' (74) wiyt) = inf { [ ¥ (a)d8 + oty - [ &5 " g a4y}
5 a 0 0
X which reveals that w(y,t) does not depand on the choice of x (if it is not unique).
5.
That is, w is well-defined on {(y,t): t € [0,T) and y € R{e"*P)}. 1If we show that
v = w on this set, the claim is proved. - : i
By the usual dynamic programming arguments, (74) yields j}; -
t-T, t-1 —(t-8)A RO
(75) wix,t) =int { [ F(alas +wix=~[ e a_ds,T) }. RO
a 0 8 0 L4 W
for t > t > 0. We will now assume that 9 is Lipschitz since a density argument shows
- that it suffices to prove that w = v in this situation. Recalling from convex analysis ?:
:f that v satisfies uf;f?
. - - _.. .~-
> (76) D(F‘) s 8 and P (q)/|q| +=ag |q] * =
we deduce easily that w is finite on V x [0,T]. It is obvious from the formula that w
. w(y,t) is Lipaschitz continuous in y uniformly in t since ¢ is Lipschitz. We next claim L
N that w is Lipschitz in t. 1Indeed, let h > 0 and let t > h. Choose ;
i o, Zac D(?') (a constant control) and then deduce from (75) with Tt = t - h and the AR,
i inf estimated above by value for this constant control that !ﬂ!;{
. h L
. « e =)
{ wix,t) € nF (a) + wix = [ o % haag,e - m) <
. o Ty
- (17 i
* s
2 < hF (@) + wix,t =~ h) + cMe“Plaln
. where C is a Lipschitz constant for w in x and M and w are constants such that
. |e~tA| < met. s
On the other hand
g h , wh h
: wix,t) > int { [ ¥ (a,)ds - cye / |ug|da} + wix,t = h)
a 0 0
N and using (76) we find that for all € > 0 there ia a constant ce > 0 such that CL lf:

Ix| < er¥(x) + Cer

n'l.l.

tlaing this above we see by choosing € sufficiently small we have

w(x,t) » ~Kh + w(x,t = h)

L R L
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and it follows then that w is Lipschitz continuous of V x [0,T]. These considerations b
also show that we may restrict the infimum in (75) to controls @, such that .
-t ., X 4
(78) [ (ir a )] + [asl)ds CK(t=-1) for 0 < T< ¢t < T.
0

Finally we claim that w is a viscosity solution of (69). This will complete the
proof, for the continuity properties of w established above and the uniqueness result
of Proposition II.1 then yield that v = w. The proof that w is a viscosity subsolution

L ]
of (69) follows the usual lines ({18]) and is quite easy since for every a € D(F ) we
have (77) and, moreover,
1 lf e-(t-S)Aads - he-tha| + 0 as h » 0+
h 0
We then obtain for any such &

“tRAs,bw) - F'(a) € 0 in V x (0,®)

W, + (e
L]
in the viscosity sense. Taking the supremum over & € D(F ) we conclude that w is a

viscosity subsolution of (69).

Finally, to prove that w is a viscosity supersolution, let (p,Y) € D"w(z,s) where

s >0, Y¢ Rand p € V. That is,
wly,t) > wiz,8) + (p,y = z) + Y(t - 8) + o]y - z| + |t - &]).

Using (74) (with t = g, ' = 3 - h, h > 0 small) and (78) we deduce that

fhe'l\(s - 1)

1 1 L
A + sup' {F (p, a dr) - & £ F (a)as } 2 em)

vwhere €(h) + 0 as h + 0 and "sup'" refers to taking the supremum over controls a,
satisfying (78) (with t = t' = h). Next we observe that for such a

*

" as - D) 1 -a's P 1 P At -A"s
[e a dt) - - (e P, g adu)f < o g |e p-e p'[GTIdT

a

1
ih(pl

* *
Cceup le P87, _ oA ®p|

0<g<h
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and the right hand gide tends to 0 as h + 0. Finally we obtain

- .2

.
LAy

Py
*y

. ~A's 1 h 1 LI
1lim inf ) + sup'{e ) Loy f a ds) -~ : f ¥ (at)dt } >0
h+0 o ® 0

4

l" .'
et

which obviously implies
4 L ]

-As 1 h 1 L
lim sup X + sup {e Y f . a1) - o [ F (GT)dT} 0 .
hi0 a 0 0

*
-“A s

Now we are done since the left-hand side is nothing but A + P(e p).

.
%
IS
P ]
'
IAI'.:"“

‘ > #
o
1))
e
PRCAPIRTY Ny §

-."

iseﬁi

oA
Ay

-41-

- o > .. e
. B .. -~ FERCU N
~ .. .

N A SR - VA
P . . oS et DA I R S TP IR R R S PRI IR P DL -
PTG AP I P AT AL AL SR A AL AL I AT W SN PR I WA




8D

[2)

) (3]

fa}

[s)

- 6]

7

(8l

19l

(10}

(1

REFERENCES -

ot

0

Barbu, V. and G. Da Prato, Hamilton-Jacobi equations in Hilbert Spaces, Pitman,

* F
[

»
v

-
<

London 1983, Y

v

Barbu, V. and G. Da Prato, Hamilton-Jacobl equations in Hilbert spaces;

variational and semigroup approach, Scuola Normale Superiore Report, Pisa, 1984. ..
Barles, G., Existence results for first-order Hamilton-Jacobli equations, Annales : f?i’
IMP, Analyse non lindaire 1 (1984), 325 - 340.

Barles, G., Remarques sur des résultats d'existence pour les 8quations de
Hamilton-Jacobi du premier ordre, Annales IHP, Analyse non linéaire 2 (1985),
21 - 33.

Crandall, M. G., L. C. Evans and P. L. Lions, Some properties of viscosity
solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984),
487 - 502.

Crandall, M. G., H. Ishii and P. L. Lions, Uniqueness of viscosity solutions
revisited, in preparation.

Crandall, M. G. and P. L. Lions, Viscosity solutions of Hamilton-Jacobi
equations, Trans. Amer. Math. Soc. 277 (1983), 1 - 42.

Crandall, M. G., and P. L. Lions, Solutions de viscosité pour les équations de
Hamilton-Jacobi dans des espaces de Banach, C. R. Acad. Sc. Paris 300 (1985),
67 - 70.

Crandall, M. G. and P. L. Lions, Hamilton-Jacobi equations in infinite
dimensions, Part I: Uniqueness of viscosity solutions, J. Func. Anal. 62 (1985),
379 - 396.

Crandall, M. G., and P. L. Lions, Hamilton~Jacobi equations in infinite
dimensions, Part 1I1: Existence of viscosity solutions, to appear in J. Func.
Anal.

Crandall, M. G., and P. L. Lions, On existence and uniqueness of solutions of

Hamilton-Jacobhi equations, to appear in Non. Anal. Theor. Meth. Appl.

=42~

.
s s

EOL




BRI S TR A A B e N An e s Y A2 Rt oA A SCANLA L ASa A o g 400 AT

R

{12]

{13)

(14}

[15)

{16])

(17}

{18}

(19}

(20}

(21)

[22]

f23)

Crandall, M. G., and P. L. Lions, Remarks on the existence and uniqueness of
unbounded viscosity solutions of Hamilton-Jacobi equations, to appear.

Ekeland, 1., Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979),
443 - 474.

R. J. Elliot and N. J. Kalton, The existence of value in differential games, Men.
Amer. Math. Soc. 126 (1972).

Evans, L. C. and P. E. Souganidis, Differential games and representation formulas
for solutions of Hamilton-Jacobi-Isaacs equations, Indiana J. Math. 33 (1984),
773 - 797,

Ishii, H., Uniqueness of unbounded solutions of Hamilton-Jacobi equations,
Indiana Univ. Math. J. 33 (1984), 721 ~ 748.

Leduc, M., Gauges differentiab}es et partitions de l'unité, Séminaire Chocquet,
Initiation a 1'Analyze, 4‘ annee, 1964/65, no. 12, p 223 - 232; Université Paris
VI, Paris.

Lions, P. L., Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London,
1982.

Lions, P. L., Existence results for first-order Hamilton-Jacobi equations,
Richerche Mat. Napoli, 32 (1983), 1 ~ 23.

Lions, P. L., Neumann type boundary conditions for Hamilton-Jacobi equations, to
appear in Duke J. Math.

Lions, P. L. and P. E. Souganidis, Differential games and directional derivatives
of viscosity solutions of Isaac's equations II, to appear.

z“d order

Perthame, B. and R. Sanders, The Neumann problem for fully nonlinear
singular perturbation problems, Mathematics Research Center Technical Summary
Report # » University of Wisconsin-Madison, 1985.

Stegall, C., Optimization of functions on cartain subsets of Banach spaces, Math.

Annal. 236 (1978), 171 =176.

-43-

N L AN c AR )
RIS SOERI RN [ T S EPE P L

« L T iy R R R A L vy v, =
A 1 A T A U N S D T AT A A TS




[¥". 7. =" =T .7 v T RTYIRTY J 0 K -y ad —
. R SN AU NS A St fad et Aa i SN et AR BB e At A s St - e At Al boaa aara mie s B e

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
Y. REFORT NUMBER 2. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
2907 A N
. 4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED
+ o
HAMILTON-JACOBI EQUATIONS IN INFINITE Summary R;apor. 1“3 spectiic
DIMENSIONS, PART III reporting perio
6. PERFORMING ORG. REPORT NUMBER
y
7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(s)
Michael G. Crandall and Pierre-Louis Lions DAAG29-80-C-0041
— — - e
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. ::gﬁ?”o‘l{'xzﬁﬁrrnn%z%’fgg' TASK
Mathematics Research Center, University of Work Unit Number 1 =~
610 Walnut Street Wisconsin aApplied Analysis
| Madison, Wisconsin 53705
11. CONTROLLHNG OFFICE NAME AND ADDRESS 12. REPORT DATE
4 U. S. Army Research Office February 1986
: P.O. Box 12211 13. NUMBER OF PAGES
b Research Triangle Park, North Carolina 27709 43
4 . MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 18. SECURITY CL ASS. (of thie report)
_ UNCLASSIFIED
T5a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE
L [76. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Blook 20, !{ different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side if neceseary and identify by block number)

viscosity solutions
Hamilton-Jacobi equations

20. ABSTRACT (Continue on reverse side If nacessaty snd identity by block number)
This paper is concerned with a number of topics in the theory of viscosity

solutions of Hamilton-Jacobi equations in infinite dimensional spaces begun in
Parts I and II of this series. The development of the theory in the
generality in which the "space" or state variable lies in an infinite dimen-

sional space is partly motivated by the hope of eventual applications to the

DD , %n"s 1473  eoition oF 1 NOV 8815 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

- - T e - - " - . - - . . . . - , - -
et AT ,t ettt . e o a e . L L e R T A AL . R T I . A

A AP i R I St T I I S T T e T e T e L e e RS : AR

oAl ., e, € o, e o ot te am e e el . - L - - el - NN A .

‘.. ., 18l e ta e . " AR SN PRI WG - -’ .t e Tt et . o - . -t . e - . ., .- et

PSR e a Bl S elate "ot Y o, . - .. ] - P, . W) " - - . - - . T TA et Lt v - ~ - e

FGTETS. WSS FE G Y PSS VR L TR VEAE TP W o WL ¢NE 1R WA R p, )

-l e R . mlatatxcso v




o

20. ABSTRACT - cont'd.

theory of control of partial differential equations or control under partial
observation. Among the results presented are: The existence and uniqueness
theory previously discussed in spaces with the Radon-Nikodym property is
extended beyond this class; examples are given which show that Galerkin
approximation arguments in their naive forms cannot be made the basis of an
existence theory; some equations with "unbounded terms" of the sort that arise
in control of pde's are treated by means of a change of variables reducing the

problem to the previously studied cases.

LRI S P L B S

RS oLt o

o




A~ f *y KN . v.

————




